Search results for " friction dampers"
showing 5 items of 5 documents
Design of RC joints equipped with hybrid trussed beams and friction dampers
2021
Abstract The challenge of this research consists in the first attempt to apply a dissipative friction connection to beam-to-column joints with semi-prefabricated Hybrid Steel-Trussed Concrete Beams (HSTCB) and RC pillars cast in-situ. Nowadays, HSTCBs are widely adopted in civil and industrial buildings and, therefore, it is required to evaluate their compliance with the capacity design criteria and their seismic energy dissipation capability. However, the design of the reinforcement of such beams usually lead to the adoption of large amount of steel within the panel zone which becomes potentially vulnerable to the effects of seismic cyclic actions and dramatically reduce the dissipation ca…
Damping of rotor conical whirl by asymmetric dry friction suspension
2009
Abstract A new technique for the rotor whirl damping in rotating machinery, based on the elastic suspension of the journal boxes and the use of dry friction surfaces normal to the shaft axis between their supports and the frame, is here analysed theoretically for several cases of rotor systems characterized by mass and constraint asymmetry, where gyroscopic effects are to be expected and conical whirl motions may grow up. The critical flexural speeds can be easily cut off by an adhesive state of the supports and the whirl amplitude can be minimized as well throughout the remaining sliding range. Confining the operative angular speed of the rotor in the range of adhesive contact between the …
Dissipative connections of rc frames with prefabricated steel-trussed-concrete beams
2020
In the last thirty years, Hybrid Steel-Trussed Concrete Beams (HSTCBs) have been widely used in civil and industrial constructions and, therefore, their mechanical performance must be evaluated with the aim of guaranteeing adequate dissipation of the seismic energy particularly in the beam-to-column joints. However, one of the most frequent peculiarities of HSTCBs is that of using their own steel joist to cover large spans with reduced depth and, in the case of traditional beam-to-column connections, this requires large amount of steel reinforcement inside the panel zone, often made with large diameter rebars. These characteristics make both the panel zone and the beam end potentially vulne…
Experimental characterization of friction properties of materials for innovative beam-to-column dissipative connection for low-damage RC structures
2023
Low-damage design of structures in seismic-prone areas is becoming an efficient strategy to obtain "earthquake-proof" buildings, i.e. buildings that, even in the case of severe seismic actions, experience a low or negligible amount of damage. Besides the safeguard of human lives, this design strategy aims also to limit the downtime of buildings, which represents a significant source of economic loss, and to ensure an immediate occupancy in the aftermath of an earthquake. In this context, focusing on moment-resisting frames (MRFs), several solutions have been developed for the beam-to-column connections (BCCs) of steel and precast/prestressed concrete structures, but very few for cast-in-sit…
Stochastic sensitivity of steel frames with connection dampers by modal analysis
2002
A procedure for evaluation of dynamic response sensitivity of multistory steel frames with added viscoelastic beam to column connections by modal analysis is presented. The connection behavior is modeled by a Kelvin-Voigt element, consisting of a rotational spring and a dashpot connected in parallel. Consistent mass, stiffness and damping matrices of the multistory frame are utilized, leading to a structure modeling as a non-classically damped system. The procedure is based on the dynamic modification method, that allows to evaluate the response of non-classically damped structure by modal superposition, without transformation in the complex space. The differential equations governing the e…